

Modes in the GAE 2nd Harmonic Frequency Band

E. D. Fredrickson

EP Meeting PPPL, Princeton, New Jersey Sept. 14, 2022

Modes at the second harmonic of GAE are common in NSTX

- In this example, both 1st and 2nd harmonic GAE bursts show chirping consistent with formation of holes and clumps in the fast ion distribution
- 2nd harmonic GAE could be from:
 - non-linear terms in GAE dispersion equations => 3-wave coupling
 - independent weakly damped modes triggered by displaced fast ions
 - non-linearly driven GAE, off their natural frequency?
- Most observations support wave-physics $\frac{2}{5}$ 0.5 non-linearities.
- Further, the data suggests in some cases that weakly damped modes were transiently excited.

We begin with the GAE burst at 0.11s from previous slide, and its 2nd harmonic components

- A non-linear 2nd harmonic perturbations' amplitude should scale quadratically with the fundamental amplitude.
 - The frequencies should be the sum of frequencies of the fundamental mode
 - the mode number should be the sum of the fundamental mode numbers
- The amplitude scaling is found by tracking the mode frequency and calculating the RMS amplitude vs. time
 - solid line tracks mode center frequency.
 - short dashed lines indicate frequency range for RMS calculation.
- We compare the phase between the nonlinear perturbation and 2nd harmonic mode.

In this example the 2nd harmonic frequencies and mode numbers are consistent with non-linear 3-wave coupling

Fundamental modes were n = -5 and 2nd harmonic modes were n = -10.

2nd Harmonic Mode amplitude tracks fundamental

- The time-dependent RMS mode amplitudes are calculated for a fundamental and 2nd harmonic GAE mode.
- The second harmonic amplitude is plotted vs. the first harmonic amplitude on a log-log scale.
- The weak 2nd harmonic mode has low signal-tonoise at the beginning and end of the pulse,
 - The blue dashed curve shows the expected trajectory of the 2nd harmonic amplitude including noise added in quadrature.

We simulate the 2nd harmonic perturbations using the fundamental modes

- The raw data is filtered to preserve only the fundamental mode.
- That is squared, to simulate a quadratic, non-linear perturbation at the 2nd harmonic.
- The spectrograms of the simulated 2nd harmonic perturbation and the measured 2nd harmonic fluctuations are compared at right.
- There is a strong qualitative agreement between the two spectrograms,
 - There are some subtle differences in the relative mode amplitudes and in the amplitude evolutions,
 - although noise and potential differences in radial mode structure could account for some of this.

The relative phase can be calculated between the simulated and measured 2nd harmonic modes

- The relative phase for the mode indicated by the black curve is shown at right.
 - The dashed blue line shows the (adiabatic) phase vs. frequency for a driven oscillator with damping.
- The 2nd harmonic amplitude is normalized to the square of the fundamental and shown in b),
 - The nearly constant ratio is consistent with a weak effect of the plasma on the 2nd harmonic perturbations.

Expected phase shift is ≤180° for drive frequency greater than resonant frequency,
 90° at resonance and ≈0° for drive frequency less than resonant frequency.

Other cases provide more evidence of the independence of the 2nd harmonic GAE

- Mode decay shows hystererisis, suggesting this is weak coupling to independent modes?
- This example is taken from same shot, but about 15 ms later – nearly identical plasma parameters.

The relative phase differs in this case

- The relative phase shift suggests drive frequency is near resonance frequency?
 - While frequency chirps down 60 kHz?
- Could damping be much higher in this shot, broadening resonance?

Expected phase shift is ≤180° for drive frequency greater than resonant frequency,
 90° at resonance and ≈0° for drive frequency less than resonant frequency.

GAE bursts in higher field plasmas are shorter, less likely to chirp

- A typical GAE burst in a 5.9 kG plasma
 - (previous example was 2.7kG).
- Fundamental mode numbers are n = 9, 10, 11.
- 2nd harmonics should range from n = 18 to 22.
- There might be some small frequency chirping, but by any measure it's much less than in low field GAE bursts.

Large toroidal variation in 2nd harmonic amplitude

- Data suggests 2nd harmonic mode is localized in front of RF antenna.
- Could the strong localization be correlated with the shorter wavelengths at higher field?
- Not much chance of adding sensors there.
- Plans are to add sensors in 30° to 60° span.

Not a bandwidth issue for magnetic sensors

- Not much besides ICE inhabits the frequency range above 4 MHz in NSTX-U.
- The 4th harmonic ICE at 15 MHz is roughly toroidally symmetric,
 - it was also possible to measure the mode number.
- Generally, other ICE harmonics are also toroidally symmetric.
- ICE is also long wavelength with
 1 ≤ |n| ≤ 4

Spectra show toroidal Amplitude of 2nd harmonic GAE

spectra.

localization.

Mode amplitudes approximately consistent with quadratic non-linearity

- Roughly quadratic ratio over two orders of magnitude
 - relatively lower noise in this frequency range.
- Scaling is same in strong and weak areas.

Mode amplitudes approximately consistent with quadratic non-linearity

- Roughly quadratic ratio over two orders of magnitude
 - relatively lower noise in this frequency range.
- Scaling is same in strong and weak areas.

Frequencies don't always satisfy 3-wave coupling rule

- However, noise from switching Power Amplifier precludes mode analysis of 2nd harmonic.
- This example also doesn't show frequency chirping.

The 2nd harmonic GAE appear to be partially independent

- Amplitude evolution of 1st and 2nd GAE during burst appears to be de-coupled;
 - small caveat is that amplitude measurement is at plasma edge.
 - Possibly could be explained frequency-dependent 2nd harmonic damping term?
- Toroidally localized 2nd harmonic GAE inconsistent with simple non-linear response;
 - toroidal localization of short wavelength Alfvénic modes is something new.
 - Could have important ramifications for the modeling of TAE induced transport in ITER?
- These results suggest that the fundamental GAE are acting like an antenna where the nonlinearity creates perturbations at twice the frequency and half the wavelength
 - not as much control over frequency as with an an antenna, but wavelength is fixed vs. not well defined,
 - drive is weak, but has the advantage of being where the mode is, the antenna has to deal with fast fall-off,
 - because the excitation isn't from the edge, backing out the antenna drive from the measurement is easier,
 - Similar evidence of non-linearity has previously been seen with TAE.

Future work:

- Work out non-linear terms in the GAE dispersion relation derived from Brazinski 2-fluid;
 - is relative amplitude of harmonics reasonable?
 - can anything be understood from scaling with plasma parameters?
- Would hole-clump model of chirping predict non-linear terms as a result of driving GAE off their natural resonance?
 - Fundamentally, waves transfer energy between kinetic (motion of plasma tied to field lines) and potential (energy stored in perturbed magnetic field geometry).
 - If waves driven off natural frequency, energy must be stored in fast-ion distribution to compensate for lower kinetic energy from slower motion at lower frequencies. This would introduce perturbations at twice the mode frequency.
- Larger collection of data needs to be analyzed.
 - How common are disparate frequencies? Disparate mode numbers?
 - What about hole-clump chirps at higher field? Where are they?
 - "Good" Mirnov data only available from 2016 campaign (SPA noise), which was all done at ≈6kG.